

2003 Marking Scheme

Grade	Mark Required		
Awarded	(/ ₁₂₅)	%	
A	91+	73%	
В	75+	60%	
С	60+	48%	
D	?	?	
No award	?	?	

2003 Adv Higher Chemistry Marking Scheme

MC Qu	Correct Answer	% Correct	Reasoning		
1	A	77	$\square A$ β-particles are electrons emitted from a nucleus when a neutron splits into a proton and an electron $\square B$ γ-radiation, X-rays, UV, visible, Infra red, Microwaves, radio & TV are electromagnetic radiation $\square C$ γ-radiation, X-rays, Ultraviolet, visible, IR, Microwaves, radio & TV are electromagnetic radiation $\square D$ γ-radiation, X-rays, UV, visible, Infra red, Microwaves, radio & TV are electromagnetic radiation		
2	С	80	Potassium permanganate KMnO₄ is purple as magenta/purple light is transmitted. Magenta is a mixture or red & blue light ∴ green light must be absorbed		
3	В	69	 ☑ A Melting points decrease down group 1 (data book p6) ☑ B Electronegativity increases down group 1 ∴ bigger the ∆electroneg the greater the ionic nature ☑ C The 1st ionisation energy decreases down group 1 as atoms become bigger (data book p10) ☑ D NoCl has 6:6 co-ordination but CsCl has 8:8 coordination in their lettice structures 		
4	A	55	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
5	A	63	Maximum absorbance when volume of ligand solution L is twice the volume of the M^+ solution (both 0.1 mol I ⁻¹) \therefore Complex is ML ₂ (not M ₂ L). Ligand is neutral so charge on complex is the same as the charge on the metal ion $M^+ \therefore [ML_2]^+$		
6	D	80	Image: Structure of the second sec		
7	D	60	Co atom electron arrangement: 1s² 2s² 2p ⁶ 3s² 3p ⁶ 4s² 3d ⁷ or [Ar] 4s² 3d ⁷ Co²+ ion electron arrangement: 1s² 2s² 2p ⁶ 3s² 3p ⁶ 3d ⁷ or [Ar] 3d ⁷ (NB 4s electrons removed first)		
8	D	29	$2Zn + O_2 \rightarrow 2ZnO$: production of Zn is the reverse reaction. Upper line is reversed on Ellingham diagrams. $2Zn + O_2 \rightarrow 2ZnO$ becomes the upper line at temperatures above 1400°C At 1400°C decomposition of ZnO becomes feasible and ZnO starts to decompose to form Zn		
9	В	46	no. of moles of NO ₃ ⁻ ion = volume x concentration = 0.5l x 0.1mol l ⁻¹ = 0.05mol NO ₃ ⁻ ions But 1 Ca(NO ₃) ₂ formula unit releases 2 NO ₃ ⁻ ions \therefore no of moles Ca(NO ₃) ₂ needed = 0.025mol volume = $\frac{\text{no. of mol}}{\text{concentration}} = \frac{0.025 \text{ mol}}{0.25 \text{ mol }l^{-1}} = 0.1 \text{ litres} = 100 \text{ cm}^3$		
10	D	67	Ammonium dichromate = (NH₄)2Cr2O7 Decomposition reaction: (NH₄)2Cr2O7 → Cr2O3 + N2 + 4H2O		
11	С	51	E A BaCl ₂ is ionic \therefore no atoms present E B BaCl ₂ is ionic \therefore no molecules present E C BaCl ₂ is Ba ²⁺ (Cl ⁻) ₂ \therefore 1 mol BaCl ₂ formula units contains 1 mol of positive Ba ²⁺ ions E D BaCl ₂ is Ba ²⁺ (Cl ⁻) ₂ \therefore 1 mol BaCl ₂ formula units contains 1 mol of positive Ba ²⁺ ions		
12	D	62	no. of moles of K2Cr2O7 = volume × concentration = 0.025 × 0.1 = 0.0025mol Cr2O7 ²⁻ ions Equation ①: Cr2O7 ²⁻ + 14H ⁺ + 6e ⁻ → 2Cr ³⁺ + 7H ₂ O Equation ②×6: 6Fe ²⁺ → 6Fe ³⁺ + 6e ⁻ Add ①+②': Cr2O7 ²⁻ + 14H ⁺ + 6Fe ²⁺ → 2Cr ³⁺ + 7H ₂ O + 6Fe ³⁺ 1mol 6mol 0.0025mol 0.015mol		
13	A	76	 A removal of H⁺ by neutralisation removal of product more forward reaction (dissociation) B addition of H⁺ addition of product more reverse reaction to remove product C addition of catalyst would not change proportions of products at equilibrium D addition of H₂PO₄⁻ addition of product more reverse reaction to remove product 		
14	С	63	$\begin{split} & PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g) \\ & 1 \text{mol} \qquad 1 \text{mol} \qquad 1 \text{mol} \\ & \text{But equilibrium concentration of PCl}_5 = 0.5 \text{ mol} \qquad 0.5 \text{mol} \qquad 0.5 \text{mol} \qquad 0.5 \text{mol} \\ & \text{Final volume} = 0.5 \text{mol} PCl_5 \text{ remaining} + 0.5 \text{ mol} PCl_3 \text{ produced} + 0.5 \text{mol} Cl_2 \text{ produced} = 1.5 \text{mol} \text{ gas} \end{split}$		

15	٨	76	Titration of weak acid (CH3COOH) and strong alkali (NaOH)
15	A	10	$_{}$ neutralisation occurs at alkaline pH (i.e. pH>7) $_{}$ Indicator used should be at pH range above 7
			🗷 A as acid is diluted, pH increases to pH=7
16	R	63	⊠B [H⁺] decreases as acid is diluted
10	U	05	$\mathbf{E}C$ pK _a remains constant during dilution
			D degree of dissociation remains constant during dilution
			$\mathbb{E}[A][OH^{-}] = 10^{-14} \therefore [H^{+}] = 10^{\circ} \therefore pH = 0$
17	B	51	$ \blacksquare B [OH^{-}] = 10^{\circ} \therefore [H^{*}] = 10^{-17} \therefore pH = 14 $
	0	-	$\mathbb{E}[OH^{2}] = 10^{4} \therefore [H^{2}] = 10^{42} \therefore pH=10$
			\square
			\mathbb{R} Bond entially equation should only break O-H bonds. (H ₂ in equation H-H bond is formed)
18	D	72	\mathbb{R} Bond enthalpy equation should only break O-H bonds (H ₂ in equation : H-H bond is formed)
			\mathbb{M} D H ₂ O \rightarrow O + 2H is breaking 2x O-H bonds \therefore AH = 2x O-H bond enthalpy = 2X
			$\mathbb{Z}A \wedge H_2$: Na(s) \rightarrow Na(a) = enthalpy of atomisation of sodium = +107kJ mol ⁻¹
10	~	10	E B ΔH_3 : $\frac{1}{2}Cl_2(q) \rightarrow Cl(q) = \frac{1}{2}x$ bond enthalpy of chlorine = $\frac{1}{2}x$ 243 = +121.5kJ mol ⁻¹
19	D	49	$\mathbb{E}C \ \Delta H_4$: $Cl(q) + e^- \rightarrow Cl^-(q)$ = enthalpy of electron affinity = -349kJ mol ⁻¹
			$\square D \ \Delta H_5$: Na(g) \rightarrow Na ⁺ (g) + e ⁻ = enthalpy of 1 st ionisation = +496kJ mol ⁻¹
			$\blacksquare A \Delta H_3$ is endothermic
20		70	E B Δ H ₄ is exothermic
20	υ	17	$\mathbf{E}C \ \Delta \mathbf{H}_5$ is endothermic
			${oxtimes}$ D ${}_{\Delta}$ H $_6$ is enthalpy of lattice formation which is always exothermic and large
			A not enough information to make decision (need information on slow RDS step)
21	D	65	■B overall order is 3 rd order (1+2=3)
	U	00	I≚C Order of Q = 2 nd order ∴ double [Q] → rate increase x4
			MD In all reactions, as reaction proceeds the reaction slows down.
			$\Delta G^{\circ} = \Delta H^{\circ} - I \times \Delta S^{\circ}$
	~		negative value $X - T \times (negative \Delta S^{\circ})$
22	С	58	
			hegalive value = X + (positive value)
			$\therefore \Delta H^\circ$ = X = (negative value) - (positive value) = negative value = exothermic
			Electrons flow from metal M to Ag in diagram
		B 93	$0 \times \mathbf{-1} \qquad \qquad M \to M^{2*} + 2e^{-} E^{\circ} = X$
23	В		$\mathbf{O}' + \mathbf{O}'$ M + 2Ag ²⁺ \rightarrow M ²⁺ + 2Ag E ^o = 1.03V
			0.8V + X = 1.03V ∴ X = 0.8V - 1.03V = +0.23V
			$\therefore M^{2+} + 2e^{-} \rightarrow M E^{\circ} = -0.23V$
			∴ M is Nickel Ni (p12 databooklet) (in old data booklet Ni ²⁺ was 0.23V now 0.26V)
24	~	70	$E^{\circ} = 1.03V$: M + 2Ag ²⁺ \rightarrow M ²⁺ + 2Ag where 2 mol of e ⁻ are transferred in redox reaction:
24	D	10	$\Delta G^{\circ} = -nFE^{\circ} = -2 \times 96500 \times 1.03 = -198790 \text{ J mol}^{-1} = -198.8 \text{ kJ mol}^{-1}$
05	~	40	$Cl_{(aa)}^{-}$ ions from salt bridge will precipitate with $Ag_{(aa)}^{+}$ ions in beaker to form $Ag^{+}Cl_{(s)}^{-}$ in the
25	C	48	salt bridge which could stop the salt bridge from completing the circuit effectively.
			Positive entropy change ΔS° is an increase in entropy \therefore an increase in disorder
26	D	82	\mathbb{X} A Decrease in disorder as H ₂ O molecules become very ordered as they freeze and line up.
			🗷 B Two gases becoming a solid is a decrease in disorder
			🗷 C Many gas monomer molecules becoming one large solid polymer is a decrease in disorder
			☑D Solid NH₄NO₃ becoming three gases is a large increase in disorder
			► A Amino -NH2 group would react with acid but not alkali
27			
21	B	40	Image: B Amino -NH2 group would react with HCl((aq) and carboxyl -COOH group would react with NaOH(aq) Image: A standard standa
21	В	40	 Amino -NH2 group would react with HCl(aq) and carboxyl -COOH group would react with NaOH(aq) C Amine -NH2 group would react with acid but not alkali C A state to a group would react with acid but not alkali

			XA C4H9NH2:	Primary Amine \rightarrow t	wo N-H bonds –	→ hydrogen bonding ∴ raised boiling point
29		52	B C3H7NHCH	13: Secondary Amin	e ightarrow N-H bond –	→ hydrogen bonding ∴ raised boiling point
20	υ	22	EC C2H5NHC2	H5: Secondary Ami	$he \rightarrow N-H$ bond	$ ightarrow$ hydrogen bonding \therefore raised boiling point
			⊠D C₂H₅N(CH	3)2: Tertiary Amine	\rightarrow no N-H bond	s $ ightarrow$ no hydrogen bonding \therefore lower boiling point
29	R	71	There are no C=C double bonds for addition reactions in methane and chlorine. Homolytic fission, free			
	D	/ 1	radical formatio	n and a chain reaction	n are all found in t	he reaction of methane with chlorine.
			MA Lower melti	ng point of oils cause	d by shape of C=C	double bonds keeping oil molecules apart
30	Δ	57	SC methanol ha	s hydrogen bonding d	ue to its -OH arou	up but alkanes have no hydrogen bonding
50	A	57	D propanone is	s miscible (mixes) wit	h water as the hy	drogen bonding of water interacts with
			Propanone d	lue to similar shape a	nd polar carbonyl	group. NB pure propanone has no hydrogen bonding.
			🗷 A methoxyme	thane (ether) is more	volatile than etho	anol (ethers have lower boiling points than alkanols)
31	D	70	B ethers are r	not as reactive when a	compared to alkan	
•-	U	/ 0	区 Ethers have	peak at 1070-1150cr	n ⁻¹ (C-O-C) and alk	anols have a peak at 3200-3570cm ⁻¹ (-OH group)
			D Born nave i		i to torni same pro	$2CO_2 + 3H_2O$
			Bond Type	C - C C = C C = C C	- Н 4×С-	H + 1xC-C + 1xC=C + 1xC=C
32	Α	81	Sigma σ	1 1 1	<u>1</u> (4 σ)	$+$ (1 σ) + (1 σ +1 π) + (1 σ +2 π)
			Ρί π	0 1 2	<u>0</u> = 7σ+	3π
			⊠A nucleophile	s are attracted to t	he δ+ carbon ato	m of the polar C-Br bond in CH3CH2Br (SN2)
22	D	12	☑B Electrophile	s, not nucleophiles, are	e attracted to the o	delocalised electrons in the benzene ring of C_6H_5Br
33	В	42	■C nucleophile	s are attracted to t	he positively cha	rged carbocation intermediate (CH₃)₃C⁺ (Sℕ1)
			区 D nucleophile	s are attracted to t	he δ + carbon ato	m of the polar C-Cl bond in $(CH_3)_2CHCl$ (S_N2)
			🗷 A Aldehydes	oxidise to form al	kanoic acids. Alk	anoic acids are acidic when dissolved in water.
34	$\boldsymbol{\mathcal{C}}$	55	🗷 B Ketones da	o not oxidise with h	ot copper (II) o	xide.
54	C	55	☑C Secondary	alcohols oxidise to	form ketones. I	Ketones are neutral if dissolved in water.
			🗷 D Tertiary a	lcohols do not oxid	ise with hot cop	per (II) oxide.
			Tertiary haloger	alkanes have 3 carbo	ns directly attach	ed to the carbon bonded to the halogen.
35	Δ	1 02	MA (CH3)3CBr IS	s tertiary: 3 carbons	airectly attached	to the carbon bonded to the halogen
55	Τ	05	EC CH(CH ₂ Br) ₃ ;	each C in a C-Br bon	d has 1 carbon att	ached to the carbon with the Br atom.
			D (CH3)3CCH2	Br is primary: 1 carbo	n directly attache	ed to the carbon bonded to the halogen
36	Δ	92	Every corner is a	a carbon (14 corners	→ <i>C</i> ₁₄).	
	~	72	Every 2 point co	rner has a C-H bond ((10x 2point corner	$rs \rightarrow H_{10}$
			A The deloce	alised electrons in l	penzene attract	electrophiles
37	С	70	ыв H2SU4 + H	NO produces NO2	ions which elec	trophilically attack the benzene ring
			$\mathbf{E} \subset \mathbf{H}_2 \supset \mathbf{U}_4 + \mathbf{H}_2$	nog produces NO2	ions which elec	in ophilically attack the denzene ring
				on ut rinuz in meci	to form CII+	iong in the program of ALCL actual st
38	Α	37	CHI3CI NETER	ory rically splits		ions in the presence of Alcis catalyst.
			CH3 electro	philically attack	benzene ring	and substitute onto the ring.
			Markovinok's Rul	e: H atom of HCl add	s onto the C in the	e C=C bond which has the higher number of
39	Α	75	H adds onto C3 i	n 2-methvlnent-2-en	a (C3has 1 hydroae	n atom attached to it)
			Cl adds onto C2 i	n 2-methylpent-2-en	e (C2 has no hydro	gens attached to it)
			0	$2C(s) + 2H_2(s) \rightarrow$	$C_2H_4(a)$	Enthalpy of formation for ethane (data required)
					C ()	
			e	$C(s) \rightarrow$	C (g)	Entralpy of sublimation (atomisation) (aata requirea)
			€	$H_{2(g)} \rightarrow$	2H(g)	Bond Enthalpy for H2 (data required)
40	C	54	0 ×-1	$C_2H_{4(g)} \rightarrow$	$2C(s) + 2H_{2(g)}$	
			❷ ×2	$C(s) \rightarrow$	C(g)	
			€x2	$H_{2(q)} \rightarrow$	2H(q)	
						Equals the bond enthalpies for:
			0 '+ 0 '+ 6 '	$C_2H_{4(g)} \rightarrow$	2C(g) + 4H(g)	4xC-H + 1xC=C (data required) to be calculated
		L	1			(uuru requireu) to be culculuted

20	2003 Adv Higher Chemistry Marking Scheme			
Long Qu	Answer	Reasoning		
1a	Same atom provides both electrons in a bond	A dative covalent bond is when a lone pair on an atom provides both the electrons which are shared between two atoms in a covalent bond e.g. $H^* + :NH_3 \longrightarrow NH_4^+$		
1b	H H N X H	where x is electron from N and $ullet$ is electron from H		
1c	н н	All 4 bonds (including the dative covalent bond) are equal and indistinguishable from each other. The tetrahedral shape formed has a bond angle of 109.5° between all of the bonds. Positive charge spread evenly over whole ion		
2a	0.0055mol	no. of mol NaOH = volume × concentration = 0.0081 × 0.11 = 0.000891mol NaOH + HCl → NaCl + H ₂ O 1mol 1mol 0.000891mol 0.000891mol Total no. of mol HCl = v × c = 0.04 litres × 0.16 mol l ⁻¹ = 0.0064mol no. of mol of HCl not used in neutralisation of MgCO ₃ = 0.000891mol no. of mol of HCl used in neutralisation of MgCO ₃ = 0.0064 - 0.000891 = 0.005509mol		
2b(i)	MgCO3 + 2HCl ↓ MgCl2 + H2O + CO2	MgCO3 + 2HCl → MgCl2 + H2O + CO2		
2b(ii)	92.8%	$1 \mod MgCO_3 = (1\times24.3)+(1\times12)+(3\times16) = 24.3+12+48 = 84.3g$ $MgCO_3 + 2HCI \longrightarrow MgCl_2 + H_2O + CO_2$ $1 \mod 2 \mod 0.002755 \mod 0.005509 \mod 0.002755 \mod \times 84.3g = 0.2322g MgCO_3$ $mass = no. \text{ of mol } \times gfm = 0.002755 \mod \times 84.3g = 0.2322g MgCO_3$ $\% \text{ purity} = \frac{\text{mass of pure}}{\text{mass of impure}} \times 100 = \frac{0.2322}{0.25} \times 100 = 92.8\%$		
3a	SiO ₂	SiO₂ is the only covalent network oxide in the table: ⊠high melting point ⊠non-metals only in oxide		
3b(i)	Can react as an acid or a base	Al_2O_3 is amphoteric as it reacts as an acidic oxide and a basic oxide e.g.		
3b(ii)	Al ₂ O ₃	as a base: $Al_2O_3 + 6HCl \longrightarrow 2AlCl_3 + 3H_2O$ as an acid: $Al_2O_3 + 3H_2O + 2NaOH \longrightarrow 2NaAl(OH)_4$		
3с	CI CI	No of electron pairs = $\frac{\text{No. of outer electrons in central atom} + \text{No. of bonds} - \text{charge}}{2}$ = $\frac{6+2-0}{2}$ = $\frac{-8}{2}$ = 4 electron pairs \therefore tetrahedral arrangement of electrons 2 bonding pairs and 2 lone pairs \therefore angluar shape		

4a	6	Oxalate $C_2O_4^{2-}$ ion is 3 oxalate ions surrout	a bidentate lig	gand -	Fe ³⁺
		co-ordination number	=6		0—
4b	Acts as oxidising agent (oxidises Fe²+ → Fe³+)	Fe ²⁺ (C_2O_4) ²⁻ has Fe ²⁺ ions K ₃ [Fe(C_2O_4) ₃] and Fe(OH) ₃ both contain Fe ³⁺ ions Oxidation: Fe ²⁺ \rightarrow Fe ³⁺ + e ⁻ carried out by an oxidising agent			
4c	1 mol	(NH4)2Fe(SO4)2 + 1mol 6mol 6FeC2O4 + 3H2O2 + 6mol 2Fe(OH)3 + 3H2C2O4 + 2mol ∴ 6 mol FeSO4(NH4)2SO4 1 mol FeSO4(NH4)2SO4	H2C2O4 6K2C2O4 K2C2O4	FeC ₂ O ₄ + (N 1mol 6mol $4K_3Fe(C_2O_4):$ 4mol $2K_3Fe(C_2O_4):$ 2mol $6 mol K_3Fe(C_2O_4)$ $1 mol K_3Fe(C_2O_4)$	H4)2SO4 + H2SO4 3 + 2Fe(OH)3 2mol 3 + 3H2O)3 3
4d	19%	1mol (NH₄)2Fe(SO₄)2.6H2(1mol K3Fe(C2O4)3.3H2O (NH4)2Fe(SO4)2.6H2O ← 1mol ← 392g ← 5g ← % Yield =	$D = (2 \times 14) + (8 \times 1) + (8 \times 1) + (8 \times 1) + (1 \times 5) +$	$+(1\times55.8)+(2\times32.1)$ $4.2+128+108 = 39$ $55.8)+(6\times12)+(12\times2+192+54 = 491.1)$ $O_4)_3.3H_2O$ ol $1.1g$ $1.1g \times \frac{5}{_{392}}$ $.3g (theoretical 1)$ $= \frac{1.2}{6.3} \times 100 = 1$	l)+(8×16)+(6×18) 12g <16)+(3×18) g 100% yield) 19%
5a (i)	LiAlH4 lithium aluminium hydride	Oxidation: butan-1 ∴ Reduction: butanal	-ol (B) (A)	► butanal (A) ► butan-1-ol (E	3)
5 a(ii)	HBr hydrogen bromide	HBr adds across the but-1-ene + hy	C=C double bo drogen bromide –	nd: 2-bromol	butane
5b(i)	Dehydration	H2O is eliminated bet	ween 2 carboi	ns forming a C	=C double bond
5b(ii)	Oxidation	Oxidation: secondary alcohol> ketone			
5с	1-bromobutane	The major product according to Markovnikov's Rule will be 2-bromobutane as the H of HBr will add to C_1 as C_1 has more H atoms already attached to it. However, some H will add to C_2 meaning Br will add to C_1 creating the minor product 1-bromobutane.			
5d	One from: Benedict's Solution Fehling's Solution Tollen's Reagent Acidified Dichromate Acidified permanganate (hot) copper (II) oxide	Oxidising Agent acidified dichromate acidified permanganate hot copper (II) oxide Tollen's Reagent Benedict's/Fehling's Solution	primary alcohol ↓ aldehyde √ √ × × ×	secondary alcohol ↓ ketone √ √ × × ×	aldehyde ↓ carboxylic acid ✓ ✓ ✓ ✓ ✓

		For trans- and cis- geometric isomers,	each end of the C=C double bo	nd must
5e (i)	Both atoms on one	Hac H	н н	
	side of C=C double	C=C	C=C	
	bond are the same	H [∕] [⊂] C₂H₅	$H_3C \frown C_2H_5$	
		trans-pent-2-ene	cis-pent-2-ene	
		D	E	
		C_2H_5	C_2H_5	
E a ()	D and E			
5e(11)	Dana E	Daning	Ċ	
		DI CH ₃	HO ^m CH ₃	
		H ^{D: 2-bromobutane}	H E: butan-2-ol	
60(1)	Nucleophilic	S _N 1: Nucleophilic substitution with 1 particl	e involved in (slow) rate determini	ing step
00(1)	substitution	SN2: Nucleophilic substitution with 2 partic	les involved in (slow) rate determi	ining step
		H CH₃ H	ЧЧЧ	
		Н-С-С-С-Н-	\rightarrow H - C - C - C ·	– н
			Ĩ. ⊕, Ĭ	
	1	H Br H	н	
	structural formula of		40-	
6a(ii)	reactant & product		FIO	
	1mark			
	structure of intermediate		+	
			H CH₃H	
			H - C - C - C	— Н
				• •
	Carbonation		н Онн	
6b	intermediate is not	The carbocation produced by the heter	olytic splitting of the C-Br bo	nd in
	stable enough to exist	1-bromobutane is not stable enough for	TT TO DE A VIADIE FOUTE FOR rea	ction.
		H CH₃	H H	
6c	Any diagram	$H - \dot{c} - \dot{c} - c$	-C-C-H	
			Ĩ Ĩ	
	snowing:			
7.	snowing:	H CH ₃	H H	1
7a	C=O (carbonyl)	H CH3 The C=O group in an aldehyde (RCHO) c	causes an adsorption at 1730cn	n ⁻¹
7a 7b	C=O (carbonyl) C2H5 ⁺ or CHO ⁺ (accept: C2H5 or CHO)	H CH3 The C=O group in an aldehyde (RCHO) o C ₂ H ₅ = (2x12)+(5x1) = 24+5 = 29 CHO = (1x12)+(1x1)+(1x16) = 12+1+16 = 2	H H causes an adsorption at 1730cn	n ⁻¹

	нн -	Evidence from Reasoning			
		part(a) IR spec Peak at 1730cm ⁻¹ ∴ CHO group			
	H = C = C = C''	part(b) Mass spec C2H5- group and CHO- groups both weigh 29			
/a		Chemical Shift No. of H atoms Group			
	Н Н Н	Part (c) NMR <u>1.1 3 -CH₃</u>			
	or CH2CH2CHO	2.5 2 -CH ₂ -			
	Earma a salid				
7.	(derivativa) which has	Brady's Reagent forms a white crystalline derivative solid with aldehydes and			
<i>1</i> e	(derivative) which has	melting point apparetus			
	certain menting point	Accordant apparates.			
8a	Answer should include:	Agonists bind with the active site and produces a biological response.			
		Antagonists bind with the active site and inhibit a biological response			
8h	Answer should include:	rnarmacophores are the specific snape of a chemical which fits into a receptor to cause or inhibit a biological response. Molecules which fit the receptor have the sam			
00	Answer Should Meldue.	pharmacophore shape whether it gives the biological response inside the cell or not.			
		Experiments Change in conditions Effect on Rate Order			
		1+2 $[H_2O_2] \times 2 \times 2 \qquad [H_2O_2]^1$			
9a	Rate = k [H2O2][I ⁻]	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
		$Date = k [H_2O_2][T]$			
9h	23×10^{2} mol ⁻¹ c ⁻¹	Ruie - R[1202][I] rate 207x10 ⁻³ mol 1 ⁻¹ e ⁻¹			
70		$k = \frac{1010}{[H_2O_2][T^-]} = \frac{2.07 \times 10^{-1} \text{ mol} (T^-)^3}{(0.3 \text{ mol} 1^{-1})^2} = 2.3 \times 10^2 \text{ l mol}^{-1} \text{ s}^{-1}$			
		$\Delta S^{0} = \sum S^{0} (\text{module}) = \sum S^{0} (\text{module})$			
10-	01 2	$\Delta \mathbf{J} = \sum_{i=1}^{n} \mathbf{J} \mathbf{J} \mathbf{J} \mathbf{J} \mathbf{J} \mathbf{J} \mathbf{J} J$			
100	-81.2	= (2x69.9) + (213.8) - (127.0 + (1.5x205.2))			
		= 353.6 - 434.8 = -81.2 J K ⁻¹ mol ⁻¹			
		$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$			
10h	-720.8	$= -727 - (298 \times \frac{-81.2}{1000})$			
100	720.0	= -727 - (-24.2)			
		$\Delta G^{\circ} = -720.8 \text{ kJ mol}^{-1}$			
		$\begin{array}{c} \text{Redox} \\ \text{CH}_3\text{OH} + \frac{3}{2}\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O} \end{array}$			
	O_2 +4H ⁺ +4e ⁻ \rightarrow 2H ₂ O	Reaction $CH_3OH \rightarrow CO_2$			
100		half-equations $+ \frac{3}{2}O_2 \rightarrow + 2H_2O$			
100		From Data Booklet:			
		Balance reduction $4H^+ + 4e^- + O_2 \rightarrow + 2H_2O$			
		reaction			
10d	H⁺ ion	H ⁺ ions are products in the oxidation reaction			
100		H ⁺ ions are reactants ion the reduction reaction			
		$pH = \frac{1}{2}pK_a - \frac{1}{2}log_{10}C$ $= \frac{1}{2}(4, Q) = \frac{1}{2}log_{10}(Q, Q)$			
11a	2.80	$= \frac{1}{2}(4.9) - \frac{1}{2}\log_{10}(0.2)$ = 2.45 - (-0.35)			
		= 2.80			
	Anguan about	A buffer had been created.			
11b	Answer should	Octanoate ions created by partial neutralisation with NaOH will mop up H^{\star}			
	include:	ions from the added HCl solution: Octanoate ions + $H^{+} \Rightarrow$ Octanoic acid			
_	3×10 ⁻⁶	$[H^{+}]$ [Tn ⁻] 10 ⁻⁷ x (3.9x10 ⁻⁴)			
12a	or 0 00003	$K_{In} = \frac{11 + 3 + 2 + 3}{[HTn]} = \frac{10 + 2 (0.5 \times 10^{-5})}{1.3 \times 10^{-5}} = 3 \times 10^{-6}$			
	01 0.000003				
12h	Yellow	At pH > /, $[In^{-}]$ [HIn] as H ⁺ ions have reacted with alkali			
ICD	7611000	At pH < 7, [HIn] >[In ⁻] as H ⁺ ions have joined up with In ⁻ ions			